Integrating a HRTF-based Sound Synthesis System
into Mumble

Martin Rothbucher, Tim Habigt, Johannes Feldmaier and Klaus Diepold

Institute for Data Processing, Technische Universitdt Miinchen
Arcisstr. 21, 80333 Miinchen, Germany

{martin.rothbucher, tim,

Abstract—This paper describes an integration of a Head
Related Transfer Function (HRTF)-based 3D sound convolution
engine into the open-source VoIP conferencing software Mumble.
QOur system allows to virtually place audio contributions of
conference participants to different positions around a listener,
which helps to overcome the problem of identifying active
speakers in an audio conference. Furthermore, using HRTFs to
generate 3D sound in virtual 3D space, the listener is able to make
use of the cocktail party effect in order to differentiate between
several simultaneously active speakers. As a result intelligibility
of communication is increased.

I. INTRODUCTION

Nowadays, economic and social developments require more
and more interactive communication over teleconferencing
systems to manage work progress and projects, or to just
communicate while playing network computer games.

Recently, there was great progress concerning the quality
of speech by increasing bandwidth of internet connections
and by implementing capable algorithms to suppress noise.
Furthermore, computer generated visualizations of conference
rooms and the conference participants have been implemented
to increase the degree of immersion [1].

High quality but very expensive solutions for professional
teleconferencing are available on the market. In these systems
each conference attendant at a remote site is recorded by a
camera and is shown on a screen in the conference room.
The sound is recorded by a microphone and played below the
screen showing the participator. In such a way, a high degree
of audio immersion is expected to be achieved, because the
audio signals are in fact played at physically different places
in the conference room.

Such a system is usually too expensive for small companies
and computer gamers. As a simple solution, most of them
are using freeware to conduct teleconferences. One popular
teleconferencing freeware is Skype, using direct peer-to-peer
connection between the users. Audio codecs used by Skype
seek to improve speech quality but do not use binaural tech-
niques to generate 3D sound. Another prominent conferencing
tool for gamers is Teamspeak. Unfortunately, neither Skype nor
Teamspeak are open source.

MMSP’10, October 4-6, 2010, Saint-Malo, France.
978-1-4244-8112-5/10/$26.00 (©2010 IEEE.

978-1-4244-8112-5/10/$26.00 ©2010 IEEE 24

johannes.feldmaier, kldi}@tum.de

Recently FEkiga, an open source VoIP software, was
equipped with binaural sound rendering to make use of the
well-known cocktail party effect [2], enabling the user to
virtually differentiate and understand simultaneously talking
speakers [3]. Ekiga uses the Session Initiation Protocol (SIP)
to initiate direct connections between each user. These con-
nections are symmetric with respect to their up- and download
bandwidth. If there are lots of participants or the upload is
restricted, this might result in a loss of quality or the number
of participants has to be limited.

In our approach, we use the open-source voice chat soft-
ware Mumble. Mumble has a vivid and active community
which consequently pushes the development and quality of the
software. Mumble is using proprietary Transmission Control
Protocol (TCP) messages and User Datagram Protocol (UDP)
packets to communicate with the server component Murmur.
All traffic is routed through the server and only one outgoing
connection is needed. This results in an asymmetric network
load, which is advantageous for the common network archi-
tecture. Another advantage of Mumble is the well-arranged
structure and the consequent adjustment towards voice com-
munication. Also, the source code is easy to understand and
portable, using C++ and the Qt framework.

In this paper, we give an introduction to Head Related
Transfer Function (HRTF)-based sound synthesis and describe
how to integrate our approach into Mumble.

The paper is organized as follows. Section II provides
basic knowledge about HRTF data. In section III, different
sound convolution techniques are summarized. Section IV
explains the structure of Mumble our approach of integrating
HRTF sound convolution into Mumble. Finally the 3D audio
extension is presented in section V and a conclusion is given
in section VL

II. HEAD RELATED TRANSFER FUNCTIONS

The human head, shoulder, torso and pinna can be regarded
as a linear and time invariant system for sound waves as they
enter the ear canal [4]. Due to reflexion and diffraction by the
human body, sound waves have to undergo spectral changes on
their way to the ear drum, described by the so called HRTFs.
Since the diffractions and reflexions differ from direction to
direction, HRTFs can be considered as direction dependent
filters. It is important to know that a set of HRTFs is unique

x (t,d)
h.(d)
X(t) ((
X:(t,d) hy{d)
Fig. 1. Measurement of the direction dependent filters

for each individual due to unique geometric features of each
person.

Usually, a set of HRTFs is generated by measuring the
Head Related Impulse Responses (HRIRs), the time domain
representation of the HRTFs, by a time-consuming procedure
in an anechoic chamber [5]. Small microphones are placed in
the entrance of sealed ear canals and record sound presented
by a loudspeaker at a certain position. Then the loudspeaker
is moved to the next position and the procedure is repeated.
Depending on the density of the sampling grid, the process of
measuring a set of HRTFs can last several hours.

Figure 1 illustrates a setup to measure HRIRs. The mono
signal x is unequally delayed before arriving at the ears due
to path differences, which lead to the so-called interaural time
difference (ITD). Additionally, the loudness of the signals
is influenced by shadowing effects of the head, resulting
in interaural level differences (ILD). Finally, diffraction and
reflexion from the listener’s body are changing the spectrum
of the signal. The recorded left and right signals z; and xp
can be described by

wp(t,d) = hi(d) * z(t) (1)

and

zr(t,d) = hr(d) * x(t), 2)

where d is the direction of the sound source relative to the ears
and * describes the convolution operation in time domain.

Figure 2 shows a set of recorded impulse responses of
the right ear in the saggital plane. It initiates that direction
dependent reflexions and diffractions by the body lead to
different responses.

With a set of measured HRTFs it is possible to convert
a mono signal to a 3D presentation via stereo headphones.
Computing (1) and (2), one can generate the spatial sound
signals zr(t,d) and zr(t,d) by convolving a mono signal
x(t) with hp(d) and hgr(d), respectively.

III. CONVOLUTION TECHNIQUES

To add direction information to a mono signal using a HRTF
based approach, it is necessary to filter the input signals with
the characteristic HRTFs. For every position in the virtual

25

Amplitude

7250
// 200
150
// “100
80 Elevation

> o [deg]
4 \57‘—_50

2 it
Time [us] °

Fig. 2.

Example of HRIRs in the saggital plane

space there are two transfer functions hy,(d) and hr(d) which
have to be convolved with the input signal z(¢).

A. Convolution in Time-Domain

Several algorithms exist to perform convolution. Obviously,
all of them have their advantages and disadvantages. The most
straightforward algorithm calculates the convolution in time-
domain.

The definition of discrete-time convolution is given by
oo

Z z[m] hln —m],

m=—0o0

(z*xh)[n] = 3)

where x denotes the input signal and h denotes the impulse
response of the filter. This algorithm has the favorable property
that it does not introduce additional latency. On the other hand,
the computational cost is relatively high.

For every output sample, the algorithm for convolution in
time-domain has to carry-out M multiplications and additions,
where M is the length of the FIR-filter h.

B. Fast Convolution Techniques

Convolution of two signals can be computed much more
efficiently using the fact that a convolution in time-domain
corresponds to a simple multiplication in frequency-domain.
This property is exploited in the commonly-used Overlap-
Add and Overlap-Save algorithms. These algorithms reduce
the computational complexity but introduce an inherent delay
compared to convolution approaches in time-domain.

The delay introduced by filtering in the frequency-domain
originates in the blockwise computation of the Discrete Fourier
Transform (DFT). A whole DFT-block has to be buffered in
the signal processing system before the actual computation can

begin.
This leads to a miniumum time-delay d of
L
d=— 4
=)

where L is the length of a processing block and F denotes
the sample rate of the sound synthesis.

Figure 3 illustrates the operation of the Overlap-Add al-
gorithm. The input stream is divided into several blocks of

JInput”

,Output”

i

[

Y 0]

Fig. 3. Scheme of the Overlap-Add algorithm.

an arbitrarily chosen length L. These blocks are zero-padded
with M — 1 samples. Each of these blocks is transformed into
frequency domain via DFT. There they are multiplied with
the Fourier Transform of the filter coefficients (note that these
have to be calculated only once). After the Inverse Fourier
Transform, the results are stored in y;(t).

These output blocks consist of more samples than the input
blocks, which stems from the fact that a linear convolution
produces longer results than the circular convolution calculated
by the DFT.

To obtain the output signal of the linear convolution, overlap-
ping parts of the result blocks y;(¢) have to be added.

A drawback of these algorithms is the direct relation of the
filter lengths to the delay. The length of the DFT-blocks has
to be at least as big as the length of the filter. To use the
computational advantages of the fast fourier transform (FFT)
this block length is generally even higher (as FFT block-
lengths are powers of 2).

C. Partitioned Fast Convolution

To reduce the delay of fast convolution techniques it is
advantageous to have very short filters. A comparably simple
but nevertheless computationally efficient algorithm to com-
bine the advantages of fast convolution with low delays was
introduced by Torger and Farina in 2001 [6]. This algorithm
cuts a long impulse response into several shorter partitions.
Although this algorithm is theoretically less efficient than an
earlier published partitioned convolution algorithm by Gard-
ner [7], it performs very well in real implementations and has
the benefit of being free from patent restrictions.

IV. INTEGRATION OF 3D AUDIO INTO MUMBLE

This section describes the structure of Mumble concerning
the implementation of a HRTF 3D sound convolution engine
into the teleconference system.

A. Structure

Figure 4 shows the schematic structure of the Mumble
modules. The GUI is the project’s core, as common for Qt
applications. A server handler provides methods for communi-
cation with the server. The audio samples are transmitted using

26

Positional Audio

!

Mumble
network and GUI

[Audio Codec H Jo—b[Murmur
Plugins

Fig. 4. Structure of Mumble modules

-

¢

-

Fig. 5.

Mumble conference using a server

UDP packets after establishing a TCP control connection to the
server. As shown in Figure 5, Mumble only creates connections
between the server component and the user, leading to an
asymmetric network load, which is advantageous regarding
the existing network structure.

Another module is Murmur, a stand-alone server application
for Mumble. Murmur provides a high functionality such as
access control methods (ACL, Access Control Lists). Without
exception, the connections between Mumble and Murmur are
encrypted with TLSvl AES256-SHA for the control connec-
tion and OCB-AES128 for the audio streams.

The Plugins module enables developers to quickly integrate
add-ons into the software by controlling the coordinates used
for the calculation of relative positions of the connected users.
The position data is used for choosing the HRTF correspond-
ing to the position of the conference participants.

The speech coding module (Audio Codec) in Figure 4
compresses the audio data. After the data is encoded, it
is transfered in segments over UDP. The received packets
are processed in the Positional Audio module. Mumble has
actually been developed to allow communication without time
lag between persons playing online games. The Positional
Audio module virtually places communication partners corre-
sponding to the position of their avatar by just multiplying the
audio signal with an attenuation coefficient [8]. In this way,
a taste of 3D audio can be experienced by creating different
sound volume levels with a 5.1 speaker system.

We extended the Positional Audio module with our 3D
sound convolution engine, enabling 3D sound rendering with
HRTFs.

B. HRTF Integration

To enable HRTF sound synthesis for Mumble, we identified
the AudioOutput class. This class provides all main methods
for audio processing. The simplified class diagram, shown in
Figure 6, summarizes the important parts, already extended
with our classes of the HRTF filter. Within the AudioOutput
class, the method mix merges the incoming audio streams
of active conference participants by directly adding up the
signals or adding them after a previous weighting with an
attenuation coefficient (Positional Audio Mode). For HRTF
sound rendering, we extend mix by implementing a filter that
applies different HRTFs on the incoming audio streams.

Our HRTF rendering can be regarded as a virtual transmis-
sion path, shown in Figure 7. The audio streams of different
speakers are virtually attached to a HRTF-Filter module, which
has to have properties of a sink, filter and source that are
inherited from ISource, IFilter and ISink as shown in Figure 6.
The HRTF-Filter module has also to be attached to the
AudioOutput class, which has inherited the ISink properties.
After the attachment of all sources to its dedicated sinks the
whole transmission path is complete. A simple call of the
method getData processes the incoming data and returns it to
mix. After the HRTF rendering the original audio processing
of Mumble is (re-)used. The use of the model of a virtual
transmission path in a HRTF rendering approach offers a
flexible and transparent way to insert new filters and HRTF
datasets. With our approach it would be also possible to build
a system with centralized audio rendering.

Due to the fact that each individual has its own HRTFs, our
implementation of HRTF sound synthesis allows to quickly
add new HRTF datasets with respect to the user. Our system
works with datasets that are in the format of the well-known
MIT HRTF database [9]. The user only has to select the new
dataset through the provided graphical interface, and Mumble
automatically reinitializes the filter structure with the new data.

V. RESULTS

In this section we give a short description of our 3D HRTF
sound synthesis extension.

Mumble offers an interface for plugins to extract positions
of conference or online game partners. In Figure 8 our plugin,
which allows to adjust the user’s global position within the
virtual conference room as well as the head rotation by moving
the sliders, is shown.

Figure 9 shows Mumble’s main window with four active
speakers. The position of the user and the positions of the
other participants are indicated in the position window on the
left side.

Depending on the relative position of conference partici-
pants, their mono signal is transfered to 3D audio by the
corresponding HRTF. In this way, each participant’s audio
signal has also an unique directional information, enabling the
listener to make use of the cocktail party effect. The cocktail
party effect describes the ability of humans to concentrate on a
conversation partner, even in situations, where lots of people
are talking simultaneously [2]. Additionally, the loudness is

27

AudioOutput
-hFilter: HrirFilter
#mix(...): bool
+attach(source: ISource): bool
+detachAll(): void
(...)

y

ISink
+attach(source: ISource): bool
+detachAll(): void
(...)

AudioOutputSpeech
(e)

<friend class>.

ISource

+getData(numFrames: int, sink: ISink): float]|
+gotAttached(sink: ISink): void

%

BaseSource
#m_pos: Vec3
<<che’ate>>(-)Ba\7eS30urce()
= +getPosition(): Vec:
BaseSink IFilter +setPosition(pos: Vec3): void
#m_pos: Vec3 <} (.on)
<<create>>-BaseSink()
+getPosition(): Vec3
+setPosition(pos: Vec3): void
+attach(src: ISource): bool
#onAttachement(src: ISource): booll
BaseFilter
#m_pos: Vec3 HrirFilter

<<create>>-BaseFilter()
+getPosition(): Vec3
+setPosition(pos: Vec3): void
+attach(src: ISource): bool
#onAttachement(src: ISource): booll

)

Fig. 6. Simplified AudioOutput class diagram

Speaker 1
AudioQutputSpeech
ISource

T

—

Speaker 2
AudioQutputSpeech

1Source

Semen)

AudioQutputSpeech
1Source

Fig. 7.

HRTF-Filter [
AudioQutput —
ISnk/IFlter

Audio-Output
AudioOutput
ISnk

]

J

HRTF Filter Model

) Enter a test position

Own Front and Top Vector / Look-at Vector

Front: x: -1 & !7

E) &)

Top: x: 0
Own Global Position
8

Pos: x:

z-Koordinate:

Rotation (degree):

Fig. 8. Plugin to enter the own absolute position and head rotation

modeled according to the distance between the participants,
allowing two conference members to move away from the
others to hold a private discussion. The user is completely free
in choosing the spatial configuration of the different speakers.

Therefore, it is possible to use an optimal configuration for
speech intelligibility like the one proposed in [10].

Server Benutzer Kanal Hilfe

Den aktualisierten Snapshot kannst du dir hier

Audic Kgnfiguration

N Attribut:
herunterladen: . =L ==
http: /fnumble. info/snapshotmumble-2010-01 # Root
-19-1107-083589. exe =2 audio_user_1
Beende Mumble bevor du die Installation L & audio user ? H
startest. = T -

=2 audio_user_3
[15:25:44] Mit Server 129.187.105. 107 =2 audio_user_4 "
verbunden. =2 audio_user 5
[15:25:44]
Welcome to this server running Murmur.
Enjoy your stay!
Position
¢ »
L]
]
L

Fig. 9. Main window

There are several studies showing a better intelligibility
of HRTF synthesized speech signals compared to mono and
stereo signals [11]. Nevertheless, we conducted preliminary
listening experiments to ensure the functionality of Mumble
with 3D HRTF sound synthesis with low budget headsets in
an office environment. Our first observations of the system
supports the expectation that intelligibility of conferences
using HRTF sound synthesis is increased, compared to mono
and Positional Audio sound processing.

VI. CONCLUSION AND FUTURE WORK

This paper describes an integration of HRTF sound syn-
thesis into the conference software Mumble. Our 3D audio
extension provides an improved identification of conference
participants and increases intelligibility in situations with more
than one active speaker (cocktail party effect).

28

With HRTF based sound synthesis, psychoacoustic effects
are used to add additional information to the transmitted voice
data. At the moment, we are working on publishing our HRTF-
extension within the Mumble project. Moreover, it would be
interesting to conduct further listening experiments to verify
the results of our preliminary tests.

ACKNOWLEDGMENT

This work was fully supported by the German Research
Foundation (DFG) within the collaborative research center
SFB-453 “High-Fidelity Telepresence and Teleaction”.

REFERENCES

A. N. Mortlock, D. Machin, S. McConnell, and P. Sheppard, “Virtual
conferencing,” BT Technology Journal, vol. 15, no. 4, pp. 120-129, 1997.
B. Arons, “A review of the cocktail party effect,” Journal of the
American Voice I/O Society, vol. 12, no. 7, pp. 35-50, 1992.

M. Hyder, M. Haun, and C. Hoene, “Placing the participants of a
spatial audio conference call,” in IEEE Consumer Communications and
Networking Conference-Multimedia Communication and Services, 2010.
J. Blauert, “An introduction to binaural technology,” in Binaural and
Spatial Hearing, R. Gilkey, T. Anderson, Eds., Lawrence Erlbaum,
Hilldale, NJ, USA, 1997, pp. 593-609.

H. Mgller, M. Sgrensen, D. Hammershgi, and C. Jensen, “Head-related
transfer functions of human subjects,” Journal of the Audio Engineering
Society, vol. 43, no. 5, pp. 300-321, 1995.

A. Torger and A. Farina, “Real-time partitioned convolution for Ambio-
phonics surround sound,” in 2001 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA 2001), 2001, pp.
21-24.

'W. Gardner, “Efficient convolution without input-output delay,” Journal
of the Audio Engineering Society, vol. 43, no. 3, pp. 127-136, 1995.
V. Pulkki and M. Karjalainen, “Localization of amplitude-panned virtual
sources I: Stereophonic panning,” Journal of the Audio Engineering
Society, vol. 49, no. 9, pp. 739-752, 2001.

W. Gardner and K. Martin, “HRTF measurements of a KEMAR,” The
Journal of the Acoustical Society of America, vol. 97, p. 3907, 1995.
D. Brungart and B. Simpson, “Optimizing the spatial configuration of a
seven-talker speech display,” ACM Transactions on Applied Perception
(TAP), vol. 2, no. 4, p. 436, 2005.

R. Drullman and A. Bronkhorst, “Multichannel speech intelligibility
and talker recognition using monaural, binaural, and three-dimensional
auditory presentation,” The Journal of the Acoustical Society of America,
vol. 107, pp. 2224-2235, 2000.

[1]
[2]
[3]

[4

=

[5]

[6

—

[7]
[8]

[9]
[10]

(1]

