

Figure 3 illustrates the operation of the Overlap-Add al-
gorithm. The input stream is divided into several blocks of

M-1

LL

x(t)

y (t)0

y (t)1

+

+
y (t)

2

y (t)

t

k-1

„Input“

„Output“

Fig. 3. Scheme of the Overlap-Add algorithm.

an arbitrarily chosen length L. These blocks are zero-padded
with M −1 samples. Each of these blocks is transformed into
frequency domain via DFT. There they are multiplied with
the Fourier Transform of the filter coefficients (note that these
have to be calculated only once). After the Inverse Fourier
Transform, the results are stored in yi(t).
These output blocks consist of more samples than the input
blocks, which stems from the fact that a linear convolution
produces longer results than the circular convolution calculated
by the DFT.
To obtain the output signal of the linear convolution, overlap-
ping parts of the result blocks yi(t) have to be added.
A drawback of these algorithms is the direct relation of the
filter lengths to the delay. The length of the DFT-blocks has
to be at least as big as the length of the filter. To use the
computational advantages of the fast fourier transform (FFT)
this block length is generally even higher (as FFT block-
lengths are powers of 2).

C. Partitioned Fast Convolution

To reduce the delay of fast convolution techniques it is
advantageous to have very short filters. A comparably simple
but nevertheless computationally efficient algorithm to com-
bine the advantages of fast convolution with low delays was
introduced by Torger and Farina in 2001 [6]. This algorithm
cuts a long impulse response into several shorter partitions.
Although this algorithm is theoretically less efficient than an
earlier published partitioned convolution algorithm by Gard-
ner [7], it performs very well in real implementations and has
the benefit of being free from patent restrictions.

IV. INTEGRATION OF 3D AUDIO INTO MUMBLE

This section describes the structure of Mumble concerning
the implementation of a HRTF 3D sound convolution engine
into the teleconference system.

A. Structure

Figure 4 shows the schematic structure of the Mumble
modules. The GUI is the project’s core, as common for Qt
applications. A server handler provides methods for communi-
cation with the server. The audio samples are transmitted using

Fig. 4. Structure of Mumble modules

Fig. 5. Mumble conference using a server

UDP packets after establishing a TCP control connection to the
server. As shown in Figure 5, Mumble only creates connections
between the server component and the user, leading to an
asymmetric network load, which is advantageous regarding
the existing network structure.

Another module is Murmur, a stand-alone server application
for Mumble. Murmur provides a high functionality such as
access control methods (ACL, Access Control Lists). Without
exception, the connections between Mumble and Murmur are
encrypted with TLSv1 AES256-SHA for the control connec-
tion and OCB-AES128 for the audio streams.

The Plugins module enables developers to quickly integrate
add-ons into the software by controlling the coordinates used
for the calculation of relative positions of the connected users.
The position data is used for choosing the HRTF correspond-
ing to the position of the conference participants.

The speech coding module (Audio Codec) in Figure 4
compresses the audio data. After the data is encoded, it
is transfered in segments over UDP. The received packets
are processed in the Positional Audio module. Mumble has
actually been developed to allow communication without time
lag between persons playing online games. The Positional
Audio module virtually places communication partners corre-
sponding to the position of their avatar by just multiplying the
audio signal with an attenuation coefficient [8]. In this way,
a taste of 3D audio can be experienced by creating different
sound volume levels with a 5.1 speaker system.

We extended the Positional Audio module with our 3D
sound convolution engine, enabling 3D sound rendering with
HRTFs.

26

B. HRTF Integration

To enable HRTF sound synthesis for Mumble, we identified
the AudioOutput class. This class provides all main methods
for audio processing. The simplified class diagram, shown in
Figure 6, summarizes the important parts, already extended
with our classes of the HRTF filter. Within the AudioOutput
class, the method mix merges the incoming audio streams
of active conference participants by directly adding up the
signals or adding them after a previous weighting with an
attenuation coefficient (Positional Audio Mode). For HRTF
sound rendering, we extend mix by implementing a filter that
applies different HRTFs on the incoming audio streams.

Our HRTF rendering can be regarded as a virtual transmis-
sion path, shown in Figure 7. The audio streams of different
speakers are virtually attached to a HRTF-Filter module, which
has to have properties of a sink, filter and source that are
inherited from ISource, IFilter and ISink as shown in Figure 6.
The HRTF-Filter module has also to be attached to the
AudioOutput class, which has inherited the ISink properties.
After the attachment of all sources to its dedicated sinks the
whole transmission path is complete. A simple call of the
method getData processes the incoming data and returns it to
mix. After the HRTF rendering the original audio processing
of Mumble is (re-)used. The use of the model of a virtual
transmission path in a HRTF rendering approach offers a
flexible and transparent way to insert new filters and HRTF
datasets. With our approach it would be also possible to build
a system with centralized audio rendering.

Due to the fact that each individual has its own HRTFs, our
implementation of HRTF sound synthesis allows to quickly
add new HRTF datasets with respect to the user. Our system
works with datasets that are in the format of the well-known
MIT HRTF database [9]. The user only has to select the new
dataset through the provided graphical interface, and Mumble
automatically reinitializes the filter structure with the new data.

V. RESULTS

In this section we give a short description of our 3D HRTF
sound synthesis extension.

Mumble offers an interface for plugins to extract positions
of conference or online game partners. In Figure 8 our plugin,
which allows to adjust the user’s global position within the
virtual conference room as well as the head rotation by moving
the sliders, is shown.

Figure 9 shows Mumble’s main window with four active
speakers. The position of the user and the positions of the
other participants are indicated in the position window on the
left side.

Depending on the relative position of conference partici-
pants, their mono signal is transfered to 3D audio by the
corresponding HRTF. In this way, each participant’s audio
signal has also an unique directional information, enabling the
listener to make use of the cocktail party effect. The cocktail
party effect describes the ability of humans to concentrate on a
conversation partner, even in situations, where lots of people
are talking simultaneously [2]. Additionally, the loudness is

AudioOutput
-hFilter: HrirFilter
#mix(...): bool
+attach(source: ISource): bool
+detachAll(): void
(...)

AudioOutputSpeech
<friend class>

BaseFilter

#m_pos: Vec3
<<create>>-BaseFilter()
+getPosition(): Vec3
+setPosition(pos: Vec3): void
+attach(src: ISource): bool
#onAttachement(src: ISource): bool

BaseSink
#m_pos: Vec3
<<create>>-BaseSink()
+getPosition(): Vec3
+setPosition(pos: Vec3): void
+attach(src: ISource): bool
#onAttachement(src: ISource): bool

BaseSource
#m_pos: Vec3
<<create>>-BaseSource()
+getPosition(): Vec3
+setPosition(pos: Vec3): void

HrirFilter

IFilter

ISource
+getData(numFrames: int, sink: ISink): float
+gotAttached(sink: ISink): void

ISink
+attach(source: ISource): bool
+detachAll(): void

(...)

(...)

(...)

(...)

(...)

Fig. 6. Simplified AudioOutput class diagram

Speaker 1
AudioOutputSpeech

ISource

Speaker 2
AudioOutputSpeech

ISource

. . .

Speaker n
AudioOutputSpeech

ISource

HRTF-Filter
AudioOutput
ISink/IFilter

Audio-Output
AudioOutput

ISink

Fig. 7. HRTF Filter Model

Fig. 8. Plugin to enter the own absolute position and head rotation

modeled according to the distance between the participants,
allowing two conference members to move away from the
others to hold a private discussion. The user is completely free
in choosing the spatial configuration of the different speakers.

27

Therefore, it is possible to use an optimal configuration for
speech intelligibility like the one proposed in [10].

Fig. 9. Main window

There are several studies showing a better intelligibility
of HRTF synthesized speech signals compared to mono and
stereo signals [11]. Nevertheless, we conducted preliminary
listening experiments to ensure the functionality of Mumble
with 3D HRTF sound synthesis with low budget headsets in
an office environment. Our first observations of the system
supports the expectation that intelligibility of conferences
using HRTF sound synthesis is increased, compared to mono
and Positional Audio sound processing.

VI. CONCLUSION AND FUTURE WORK

This paper describes an integration of HRTF sound syn-
thesis into the conference software Mumble. Our 3D audio
extension provides an improved identification of conference
participants and increases intelligibility in situations with more
than one active speaker (cocktail party effect).

With HRTF based sound synthesis, psychoacoustic effects
are used to add additional information to the transmitted voice
data. At the moment, we are working on publishing our HRTF-
extension within the Mumble project. Moreover, it would be
interesting to conduct further listening experiments to verify
the results of our preliminary tests.

ACKNOWLEDGMENT

This work was fully supported by the German Research
Foundation (DFG) within the collaborative research center
SFB-453 “High-Fidelity Telepresence and Teleaction”.

REFERENCES

[1] A. N. Mortlock, D. Machin, S. McConnell, and P. Sheppard, “Virtual
conferencing,” BT Technology Journal, vol. 15, no. 4, pp. 120–129, 1997.

[2] B. Arons, “A review of the cocktail party effect,” Journal of the
American Voice I/O Society, vol. 12, no. 7, pp. 35–50, 1992.

[3] M. Hyder, M. Haun, and C. Hoene, “Placing the participants of a
spatial audio conference call,” in IEEE Consumer Communications and
Networking Conference-Multimedia Communication and Services, 2010.

[4] J. Blauert, “An introduction to binaural technology,” in Binaural and
Spatial Hearing, R. Gilkey, T. Anderson, Eds., Lawrence Erlbaum,
Hilldale, NJ, USA, 1997, pp. 593–609.

[5] H. Møller, M. Sørensen, D. Hammershøi, and C. Jensen, “Head-related
transfer functions of human subjects,” Journal of the Audio Engineering
Society, vol. 43, no. 5, pp. 300–321, 1995.

[6] A. Torger and A. Farina, “Real-time partitioned convolution for Ambio-
phonics surround sound,” in 2001 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA 2001), 2001, pp.
21–24.

[7] W. Gardner, “Efficient convolution without input-output delay,” Journal
of the Audio Engineering Society, vol. 43, no. 3, pp. 127–136, 1995.

[8] V. Pulkki and M. Karjalainen, “Localization of amplitude-panned virtual
sources I: Stereophonic panning,” Journal of the Audio Engineering
Society, vol. 49, no. 9, pp. 739–752, 2001.

[9] W. Gardner and K. Martin, “HRTF measurements of a KEMAR,” The
Journal of the Acoustical Society of America, vol. 97, p. 3907, 1995.

[10] D. Brungart and B. Simpson, “Optimizing the spatial configuration of a
seven-talker speech display,” ACM Transactions on Applied Perception
(TAP), vol. 2, no. 4, p. 436, 2005.

[11] R. Drullman and A. Bronkhorst, “Multichannel speech intelligibility
and talker recognition using monaural, binaural, and three-dimensional
auditory presentation,” The Journal of the Acoustical Society of America,
vol. 107, pp. 2224–2235, 2000.

28

